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Abstract

Do safety interventions create a false sense of security? We investigated whether
people adjust their behavior optimally when there are exogenous changes to risk.
In a laboratory experiment, subjects played an insurance-buying game under var-
ious risks of losing endowment. We found strong evidence of overcompensation –
subjects purchased more (less) insurance than optimum in response to an increase
(decrease) in risk. The degree of overcompensation was larger when risk increased
than when it decreased. We exposed the same subjects to changes in safety condi-
tions in real life and found little evidence that lab behaviors predict behaviors in
the field.
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1 Introduction

Do risk-mitigating public policies create a “false sense of security”? Introduced by

Peltzman (1975), the risk compensation hypothesis postulates that individual behav-

ioral changes offset the expected positive effects of a public intervention mitigating risk.

Peltzman (1975) argued that traffic deaths cannot be successfully prevented by a seat

belt mandate as it could induce drivers to compensate by driving more recklessly. That

is, individuals would treat the policy and individual effort to mitigate risk as substitutes.

Since the seminal study by Peltzman (1975), the risk compensation hypothesis has

been empirically tested in many different contexts. The risk compensation hypothesis

has been tested in the context of HIV prevention (Eaton and Kalichman, 2007; Marcus

et al., 2013; Wilson et al., 2014), bicycle helmet regulations (Adams and Hillman, 2001),

smoking behavior (Evans and Farrelly, 1998; Adda and Cornaglia, 2006; Scherer and Lee,

2014), seat belt legislation (Houston and Richardson, 2007; Evans and Graham, 1991;

Cohen and Einav, 2003), face mask mandates (Seres et al., 2021b,a; Mantzari et al.,

2020; Howard et al., 2021; WHO, 2020) and vaccines WHO (2021). The empirical results

have been mixed, and some studies have questioned whether people compensate risk at

all (Pless, 2016; Radun et al., 2018; Mantzari et al., 2020).1

Understanding the driving forces behind compensating behavior is crucial in design-

ing risk-mitigating public policies. In particular, the question of whether people compen-

sate risk optimally—as hypothesized by Blomquist (1986)—or whether individuals are

prone to making biased adjustments remains unexplored in the literature. In a combined

lab and field experiment, we investigated whether people compensate optimally in re-

sponse to exogenous changes in risk. Specifically, we aimed to test whether people have

a tendency to overcompensate, i.e., reduce (increase) their efforts by more than what is

optimal in response to an improvement (deterioration) in safety. The laboratory setup

1Several explanations have been proposed to explain why studies have failed to identify compensating
behaviors in some settings. Regarding male circumcision as an HIV prevention policy, Wilson et al.
(2014) found no evidence of circumcised men engaging in more frequent unprotected sex. They argue
that this may be because the policy made more salient the trade-off between engaging in risky behavior
and avoiding acquiring HIV. Using an online survey experiment examining the effect of face masks, Seres
et al. (2021b) showed that exogenous precautionary behavior by others in a community setting can signal
a preference for such behavior.
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enabled us to precisely predict optimal risk-compensating behavior, and thus test for

risk-overcompensation bias (ROB). We found compelling evidence of ROB – a tendency

to adjust more than optimum in response to a change in risk.

In the laboratory experiment, the subjects played five rounds of an insurance-buying

game. In each round, they received an endowment that they could lose if an “accident”

occurred. They could reduce the probability of an accident by buying costly insurance

(“effort”) from a set of options. In each round, we exogenously varied the degree of

safety, which determined the probability of an accident as well as the cost of insurance.

These parameters were carefully designed so that the payoff-maximizing choice remained

the same in every round, irrespective of the changes in the safety condition. That is, to

maximize payoffs, subjects should buy the same amount of insurance each round.

We found strong evidence of risk-overcompensation bias. On average, subjects bought

significantly more (less) insurance when safety deteriorated (improved). We show that

risk aversion could not explain the behavior. We estimate that over 70% of the subjects

exhibited risk-overcompensation bias.

To test for potential asymmetry in risk-compensating behavior, for one-half of the

subjects the external safety condition always improved in each round, and for the other

half, the safety condition deteriorated in each round. The rationale was to test for the

endowment effect—a well-documented gap between people’s willingness-to-pay (WTP)

and willingness-to-accept (WTA) in trading goods (Kahneman et al., 1990, 1991).2 The

endowment effect has previously been tested almost exclusively with physical goods. We

tested if people also exhibit similar tendencies towards intangibles, like safety. If so,

subjects would have a stronger desire to compensate for a loss in safety (i.e., by buying

more insurance), than to compensate for a gain in safety (i.e., by buying less insurance).

We observed strong asymmetry in risk overcompensation. The subjects overcompen-

sated for both increases and decreases in risk, but the magnitude of the bias was two

times larger when risk increased than when it decreased. The evidence is consistent with

2This discrepancy extends to reference dependence effects for increases and decreases in health risk
probabilities Viscusi and Huber (2012); Machina and Viscusi (2013). Empirical evidence shows that the
difference can be up to two-fold for changes in fatality risk (Viscusi and Evans, 1990).
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subjects exhibiting an endowment effect towards safety.

We augmented our laboratory experiment with additional field interventions to test

if behaviors in the lab can predict real-life behaviors in the field. That is, are subjects

who exhibited a greater degree of risk-overcompensation bias in the lab more likely to

exhibit a greater degree of compensating behaviors in the field? Before the laboratory

experiment, we exposed the subjects to two health safety field interventions: in half of

the sessions, the subjects learned that a high-efficiency particulate absorbing (HEPA)

filter was operating in the room; and half of the subjects were required to wear an N95

respirator.3 We measured their social distancing in a queue, hand sanitizer use, and

proper mask use during the sessions. As the subject pool was the same, this design

enabled us to compare risk behavior in the lab and in the field. We found that the

observed ROB in the laboratory is a weak predictor of risk-compensating behavior in the

field.

2 Model and Definitions

Consider an agent facing a risk of experiencing an accident – a binary event that occurs

with some probability and incurs a loss of utility. The probability of the accident is

mitigated by two factors: the safety condition, w ≥ 0, and the agent’s effort to avoid

the accident, e ≥ 0. The safety conditions of the agent are determined exogenously. On

the other hand, the agent’s effort is determined endogenously; upon observing the safety

conditions w, the agent determines an effort level e.

Consider an agent with a von Neumann-Morgenstern utility function that faces a

decision-making problem of choosing an effort level e ≥ 0 under uncertainty to mitigate

the risk of an accident. The agent’s utility is given by:

U(e, w) = p(e, w) · u(I − L− c(e, w)) + (1− p(e, w)) · u(I − c(e, w))(1)

3Note that our experiments took place during the third year of the COVID-19 pandemic. In Singapore
at the time, it was mandatory to wear a face mask indoors.
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where w is a safety condition observed by the agent; e denotes the agent’s effort to

mitigate the risk of an accident; I is the agent’s endowment; p(e, w) is the probability

of an accident, in which case the agent will suffer a loss of L; and c(e, w) is the cost of

effort.4

We impose assumptions on the probability function p(e, w) and cost function c(e, w).

First, both effort e and the safety conditions w decrease the chance of an accident:

∂p(e,w)
∂e

< 0 and ∂p(e,w)
∂w

< 0. Second, the cost function is increasing and convex in the

amount of effort: ∂c(e,w)
∂e

> 0 and ∂2c(e,w)
∂2e

> 0.5

It is unclear whether the cost function increases, decreases, or remains unchanged

with respect to the safety conditions w. This may be context-specific. We believe that in

many real-world situations, the cost function is weakly decreasing in w, i.e., ∂c(e,w)
∂w

≤ 0.

This is because safety interventions are often implemented in tandem with supplementary

policies to raise public awareness and make it more convenient for the public to comply.6

We denote the agent’s choice function as ē(w) and assume that their unique optimal

choice is e∗(w). Given the model and assumptions above, it is ambiguous ex ante whether

the safety conditions w and effort e are substitutes or complements. On the one hand,

when the safety conditions improve, the risk of an accident declines and thus there is

an incentive to reduce costly effort. On the other hand, the improved safety conditions

could make effort less costly, and thus encourage agents to make more of an effort.

If the safety conditions and effort are substitutes, then the optimal choice of effort

e∗(w) is decreasing in w. Formally,

∂e∗(w)

∂w
< 0.(2)

We propose two hypotheses, outlined below:

4Note that this is a generalization of the framework of Peltzman (1975) whose expected-payoff maxi-
mizing model is tailored to road safety. The agent chooses the time devoted to driving and the cost of
driving is a linear function of time expressed by forgone income.

5Blomquist (1986) explores the objective function U(e, w) = p(e, w) · u(I − L(e, w)− c(e, w)) + (1−
p(e, w)) · u(I − c(e, w)). and concludes that the shape of L(e, w) may change the optimal choice of the
agent, but this model yields qualitatively similar results to ours.

6For example, seat belt beepers installed in cars help drivers remember to comply with seat belt laws,
and price subsidies make it cheaper for people to buy masks and comply with mask-wearing regulations.
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1. Risk compensation (RC) hypothesis: People reduce (increase) effort in re-

sponse to an improvement (deterioration) in the safety condition. Formally,

∂ē(w)

∂w
< 0.(3)

The existing literature has documented some evidence of risk compensation in the

field. However, an unexplored question is whether people compensate for risk optimally.

We hypothesize that people may systematically over-respond to changes in the safety

conditions:

2. Risk-overcompensation bias (ROB): In response to an improvement (deteri-

oration) in the safety condition, people reduce (increase) effort by more than the

optimal amount. Formally,

∂ē(w)

∂w
<

∂e∗(w)

∂w
(4)

The two hypotheses have important implications for the efficacy and welfare conse-

quences of policies aimed at safeguarding the public from harm. Risk compensation, if it

occurs, can offset the intended benefits of the safety interventions. Risk-overcompensation

bias can make situations worse, leading to greater offsets of the intended benefits of the

policies. In the field, however, it is difficult to test whether or not an observed level of

effort is optimal. Unlike the choice of effort, the cost function is typically not directly

observable or quantifiable. Moreover, a decision-maker’s beliefs about the chance of an

accident also often remain unobserved.

We have designed a laboratory experiment to test for ROB. The underlying idea of

the experiment is to present the subjects with a set of choices in the spirit of Equation

(1), with each choice featuring a different safety condition.
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3 Laboratory Experiment

The laboratory experiment took place at the Center of Behavioral Economics at the

National University of Singapore, between July 13 and August 25, 2022.7 Participants

were invited from an online pool of students aged 18 and above. We conducted 32 sessions

with 5 to 14 participants, for a total of 314 subjects in the experiment. We used z-Tree

(Fischbacher, 2007) to conduct our laboratory sessions. The average session length was

60 minutes. In addition to the earnings from the experiment, the subjects received a

show-up fee of S$5.8

3.1 Design

Each subject received an initial endowment of S$17.50 and participated in five periods of

a decision-making game. Only one randomly chosen period determined their payment.

Each period consisted of making choices in two stages. The first stage was a practice

simulation for subjects to learn about the safety conditions, but where the subject’s

choice did not affect payment. Their choice in the second stage counted toward their

payoff.

Our laboratory experiment design followed the model in Section 2. In each period,

the subject faced a non-zero chance of experiencing an accident in which they would lose

S$15 from their endowment. The probability of the accident was in part determined by

the safety condition, w, which subjects had no control over. However, the participants

could choose a level of insurance, e, to mitigate the risk. Specifically, the probability of

an accident was:

p(e, w) =
1

e · w
7A detailed experiment protocol is available in the Supplementary Materials. The experiment was

pre-registered at the AEA RCT registry: https://doi.org/10.1257/rct.9716.
8The exchange rate at the time was 0.72 Singapore dollar (S$) = 1 US dollar.
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and the cost of the insurance was9

c(e, w) =
e2

w
.

The participants made insurance choices across five safety conditions (corresponding

to five periods), where w took values {4, 5, 6, 8, 10}. Subjects could choose any insurance

amount 1 ≤ e ≤ 3.1 to the nearest one decimal point; an interval that guarantees a non-

negative payoff. This intervention tests whether there is a difference between reducing

and increasing the safety conditions. Most of the literature on risk compensation entails

data on increasing w, but public measures are often temporary, and changes in both

directions may trigger ROB.

The subjects learned that in each period, w was an unknown value between 4 and

10.10 They learned that each period had a different value of w but not that w would

be either increasing or decreasing in each period. We allowed subjects to observe and

infer the value of w in the practice simulation stage. In this stage, the participants had

to enter a permitted e, and the computer displayed the monetary outcome of 10 draws

based on the subject’s choice of e and the unknown w. The computer screen also showed

the number of times the simulation resulted in an accident (i.e., losing S$15). Subjects

then proceeded to the second stage, where they could choose the insurance level e. Only

one randomly chosen period determined the subject’s final payment.

We used two randomly allotted treatment conditions. In the improving treatment,

the five periods increased w from 4 to 10. In the deteriorating treatment, the five periods

decreased w from 10 to 4. The purpose of this intervention was to observe whether the

adjustment is different between a negative or a positive change in the external safety

condition.

9Note that the cost function is decreasing in the safety condition, w. As discussed in Section 2, this
reflects the fact that many real-world safety interventions are implemented in tandem with supplementary
policies to reduce the cost of compliance.

10There are at least two reasons for not telling subjects the exact value of w. First, the participants
with good computational skills would be able to compute the optimal insurance level e∗ if w is known,
making the experiment a straightforward mathematical exercise. Second, and more importantly, this
approach better resembles many real-life situations where subjects observe the frequency of accidents,
but the exact probability of an accident remains unknown.
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After five periods of the decision-making game, we collected data on individual risk

preferences using a lottery experiment of Holt and Laury (2002). Subjects made 10

binary choices between a “risky” (S$3.85 or S$0.10 payment) and a “safe” (S$2.00 or

S$1.60 payment) gamble. The choices yield an estimate of the coefficient of the constant

relative risk aversion (CRRA), henceforth denoted by r.11 The session ended with a short

questionnaire asking for demographic details (see Supplementary Materials).

3.2 Optimal Choice for Risk-Neutral Subjects

The objective function of a risk-neutral subject is:

min
e

p(e, w) · L+ c(e, w) =
1

e · w
· 15 + e2

w
.

From the first-order condition, we get

− 15

e2 · w
+

2e

w
= 0 ⇐⇒ e∗ = 7.5

1
3 ≈ 1.96

Hence, the optimal choice e∗(w) is about 1.96, independent of the safety condition w.

That is, for subjects trying to maximize the expected payoff from the experiment, it is

optimal to not adjust their insurance choice in response to changes in the safety condi-

tions.

An important point we highlight is that the form of the cost function drives the sign of

the effect of the external safety condition w on the optimal choice of effort e∗(w). Hence,

the result above that the optimal choice is independent of w should not be interpreted

as a prediction in general.

To see this, consider that from the implicit function, we have

∂e∗(w)

∂w
< 0 ⇐⇒ −

∂2c(e,w)
∂e∂w

+ ∂2p(e,w)
∂e∂w

· L
∂2c(e,w)

∂2e
+ ∂2p(e,w)

∂2e
· L

< 0

11This experiment identifies a range of values for r as the number of choices is discrete. In the
calculations, we input the middle of these intervals, except for the extreme cases (only risky or only safe
choice) where we use the maximum and minimum values.
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if the individual is expected payoff maximizer. If both p(e, w) and c(e, w) are convex

functions of e, the sign is determined by the nominator. In reality, the sign of ∂2c(e,w)
∂e∂w

is

highly context-dependent. For example, an external safety condition may have no effect

on the marginal cost of effort, e.g. seat-belt use does not limit a driver’s ability to drive.

In other cases, it can decrease the cost of effort, e.g. community mask use may serve as

a reminder.

3.3 Evidence of Risk Compensation

We first empirically test whether subjects exhibited risk compensation. When the safety

conditions improve, do subjects reduce their insurance choices?

Recall that the subjects did not directly observe the true safety condition, w, but

instead observed the frequency of accidents occurring during the practice simulation

stage. The probability of an accident equals p(e, w) = 1
e·w , and subjects observed accident

outcomes from 10 random draws. The subjects could infer the most likely underlying

safety condition w with one that has the highest probability, ŵi,t =
10

esimi,t ·asimi,t
, where esimi,t

is the insurance choice made during the practice simulation stage and asimi,t is the number

of accidents observed (between 0 and 10). Since subjects were told that 4 ≤ w ≤ 10,

ŵi,t = 4 if 10
esimi,t ·asimi,t

< 4 and ŵi,t = 10 if 10
esimi,t ·asimi,t

> 10.

We estimate the following reduced-form random-effects model:

(5) ei,t = β0 + β1ŵi,t + β2t+ β3ŵi,t−1 + ϕXi + εi.

where ei,t is the insurance choice of subject i in period t; ŵi,t is the implied safety condition

observed by subject i in period t; ŵi,t−1 is its lagged value; and Xi is a vector of control

variables that include the subject’s estimated coefficient of constant relative risk aversion

ri, gender, and the number of advanced math courses previously taken to control for

computational skills.

The coefficient of interest is β1. β1 = 0 would imply that subjects’ insurance choices
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are not influenced by the implied safety condition. This would be consistent with the

optimal behavior of payoff-maximizing subjects. β1 < 0 (β1 > 0) would imply that

subjects decrease (increase) the amount of insurance ēi,t when they observe that safety

improves.

The results are shown in Table 1.12 Column 1 is the simplest model regressing insur-

ance choice (ei,t) on the implied safety condition (ŵi,t), without any controls. Column 2

controls for time period, t; column 3 further includes the implied safety condition of the

previous period; and finally, column 4 includes full set of controls.

Table 1: Main results

(1) (2) (3) (4)
ei,t ei,t ei,t ei,t

ŵi,t -0.063∗∗∗ -0.065∗∗∗ -0.058∗∗∗ -0.057∗∗∗

(0.0078) (0.0078) (0.0085) (0.0086)
t 0.026∗∗ 0.023∗ 0.023∗

(0.0084) (0.011) (0.011)
ŵi,t−1 -0.028∗∗ -0.027∗∗

(0.0088) (0.0089)
ri 0.026

(0.065)
Age > 23 -0.050

(0.071)
Female -0.0034

(0.067)
High Math -0.056

(0.066)
Constant 2.31∗∗∗ 2.24∗∗∗ 2.36∗∗∗ 2.37∗∗∗

(0.048) (0.052) (0.077) (0.098)
Observations 1570 1570 1256 1256
R2 0.067 0.070 0.078 0.082

Notes: Random-effect GLS regressions. Standard errors in parentheses: † p < 0.10, ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001. The dependent variable ei,t is the amount of insurance purchased by
subject i in period t. The main independent variable of interest is ŵi,t, the implied safety condition
observed by the subject. The CRRA coefficient ri is estimated with the Holt and Laury (2002)
choice experiment. Age > 23 is a dummy variable that equals 1 if the subject’s age is above the
median age of 23, and zero otherwise. Female is a dummy variable that equals 1 if the subject is
female, and zero otherwise. High Math is a dummy variable that equals 1 if the subject took at least
3 university-level math courses, and zero otherwise.

Across all models, the estimated coefficients for the implied safety condition are neg-

ative and highly significant. The results suggest that, when safety improved (worsened),

12For an overview of the demographic variables, see Table A1.
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subjects compensated by buying less (more) insurance. The results provide compelling

evidence of risk compensation. The estimated coefficients range from -0.057 to -0.065,

implying that when the implied safety condition improved by one unit, on average, sub-

jects reduced their insurance purchase by about 0.06 units. Note that this response was

costly and reduced the subject’s expected payoff, as shown in Section 3.2.

Interestingly, the estimated coefficient for time period t is positive and significant at

the 5% significance level. This suggests that subjects, on average, bought more insurance

over time. The estimated coefficients for lagged implied safety condition, ŵi,t−1, are

negative and significant at the 1% significance level. The magnitudes of the coefficients are

about half of the coefficients for the current implied safety conditions. The results suggest

that the implied safety condition of the previous time period continued to influence the

subjects’ insurance purchase decisions, albeit at smaller magnitudes. To account for

heterogeneity in analytical skills, we control for self-reported mathematical skills but find

no evidence for an effect.

Note that in our experiment, the subjects did not directly observe the safety con-

dition, but instead could infer the safety condition from the practice simulation results

(i.e., display of outcomes from ten random draws). This was implemented to better re-

semble many real-world situations where subjects observe the frequency of accidents, but

the exact probability of an accident remains unknown. As a robustness check, we esti-

mated the same models with the true underlying value of safety condition (wi,t) as the

main independent variable, and found consistent results (Table A2 in the Supplementary

Materials).

In Table 2, we conducted heterogeneity analyses to examine whether some subjects

tended to exhibit a greater or weaker degree of risk compensation. In column (1), we

included an interaction term between the implied safety condition and an indicator for

whether the subject is female. The estimated coefficient for the interaction term is neg-

ative and significant at the 5% level. On average, female subjects exhibited 83% greater

degree of risk compensation than male subjects (-0.042 for males, -0.077 for females). In

column (2), we included an interaction term between the implied safety condition and
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whether the subject has taken three or more university-level mathematics courses. The

estimated coefficient of the interaction is positive and statistically significant at the 5%

level. The results suggest that subjects who have taken more mathematics courses showed

a lesser degree of risk compensation. Finally, in column (3), we tested for an interaction

effect between implied safety condition and an indicator for the subject being older than

the median age of 23 years of age. We found no significant difference in the degree of risk

compensation exhibited by younger vs. older subjects.

Table 2: Heterogeneity analyses

(1) (2) (3)
ei,t ei,t ei,t

ŵi,t -0.042∗∗∗ -0.074∗∗∗ -0.063∗∗∗

(0.012) (0.011) (0.0099)
ŵi,t × Female -0.035∗

(0.017)
ŵi,t × High Math 0.043∗

(0.017)
ŵi,t× Age > 23 0.015

(0.013)
ŵi,t−1 -0.028∗∗ -0.027∗∗ -0.027∗∗

(0.0089) (0.0088) (0.0088)
t 0.025∗ 0.023∗ 0.023∗

(0.011) (0.011) (0.011)
ri 0.026 0.024 0.016

(0.064) (0.065) (0.065)
Age > 23 -0.012 -0.012 -0.018+

(0.0087) (0.0089) (0.010)
Female 0.17 -0.0039 0.015

(0.10) (0.063) (0.065)
High Math -0.039 -0.26∗ -0.035

(0.066) (0.11) (0.067)
Constant 2.55∗∗∗ 2.72∗∗∗ 2.78∗∗∗

(0.23) (0.23) (0.26)
Observations 1256 1256 1256
R2 0.090 0.085 0.079

Notes: Random-effect GLS regressions. Standard errors in parentheses: † p < 0.10, ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001. The dependent variable ei,t is the amount of insurance purchased by
subject i in period t. The main independent variable of interest is ŵi,t, the implied safety condition
observed by the subject. The CRRA coefficient ri is estimated with the Holt and Laury (2002)
choice experiment. Age > 23 is a dummy variable that equals 1 if the subject’s age is above the
median age of 23, and zero otherwise. Female is a dummy variable that equals 1 if the subject is
female, and zero otherwise. High Math is a dummy variable that equals 1 if the subject took at least
3 university-level math courses, and zero otherwise.
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3.4 Optimal Choice for CRRA Subjects

Can risk aversion explain why subjects compensated for changes in risk at the cost of

their expected payoffs? Let us assume that subjects’ preferences exhibit constant relative

risk aversion (CRRA) with coefficient r, and their isoelastic utility function is given by

u(c) = c1−r−1
1−r

. Their objective function becomes:

max
e

U(e, w, r) = (1− 1

e · w
) ·

(17.5− e2

w
)1−r − 1

1− r
+

1

e · w
·
(2.5− e2

w
)1−r − 1

1− r
.(6)

where 17.5 and 2.5 are the payoffs with and without an accident, respectively.

Solving this optimization problem computationally, we find that for risk-averse sub-

jects the optimal insurance choice in fact increases with improved safety conditions (i.e.,

if r > 0 then ∂e∗(w)
∂w

< 0). Risk aversion cannot explain why subjects compensated risk

in our laboratory experiment. On the other hand, for risk-loving subjects the optimal

insurance choice decreases with improved safety conditions. For risk-neutral subjects,

the optimal choice is independent of w, as shown in Section 3.2. Given that most of

our subjects were risk averse (e.g., see Table A1), risk compensation was unlikely to be

utility-maximizing.

3.5 Evidence of Risk-Overcompensation Bias

Next, we test for the risk-overcompensation bias (ROB). For subject i, we denote the

optimal choice vector as e∗i,t(wi,t, ri) calculated from the objective function (6), where

wi,t ∈ {4, 5, 6, 8, 10}.13 Similarly, the observed choice vector is ēi,t(wi,t, ri). For both, we

estimate the slopes β∗
i and β̄i of the linear models:

e∗i,t = α∗
i + β∗

i wi,t + εi,t

and

ēi,t = ᾱi + β̄i,tw + εi,t

13Point predictions of the optimal choices were calculated with Wolfram Mathematica.
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individually for all subjects. We define β∗
i and β̄i as optimal and observed degree of risk

compensation for subject i, respectively. Note that these estimates capture the average

adjustment along the range of safety conditions.

We found strong support for ROB. The mean optimal degree of risk compensation

β∗
i in the sample was 0.027. That is, when we account for the subjects’ degree of risk

aversion, it would have been optimal for subjects to increase their insurance in response

to an improvement in the safety conditions. In sharp contrast, the mean observed degree

of risk compensation β̄i was negative, at −0.034. The difference between optimal and

observed estimates were highly significant (two-sample t-test, t=-20.178, p < 0.001). The

observed adjustment behavior exhibited standard deviations that were more than four

times larger (SD=0.117) than the optimum adjustment behavior (SD=0.027). 71.6% of

the subjects’ observed slope were smaller than the optimal slope.

Next, we examined asymmetry in risk compensating tendencies between scenarios

where the safety condition is improving vs. deteriorating. The mean of observed degree

of risk compensation, β̄i, was −.021 (one-sample t-test vs. 0, t = −2.3621, p = 0.0097) in

the improving scenario and −0.050 (one-sample t-test vs. 0, t = −5.1081, p = 0.0000) in

the deteriorating scenario, respectively. The difference between the two slopes was sta-

tistically significant (two-sample t-test, t = 2.196, p = 0.014). Fig 1 plots the cumulative

distribution functions of the observed degree of risk compensation (β̄i) between improving

(blue) and deteriorating (red) safety conditions. In addition to a significant difference in

the mean, there is first-order stochastic dominance between the two conditions.

The results suggest two facts. First, the subjects exhibited significantly stronger

degree of risk-compensating tendencies when the safety condition is deteriorating than

when it was improving. This is consistent with subjects exhibiting an endowment effect

towards safety, i.e., subjects exhibiting stronger desire to compensate when they are

about to lose a degree of safety than when they are about to gain it. Second, the

degree of risk compensation in the improving-safety scenario was smaller in magnitude but

still significantly different from zero. This suggests that the observed risk-compensating

tendencies cannot be entirely explained by the endowment effect. That is, there appears
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Figure 1: Cumulative distribution functions of the observed degree of risk compensation
(β̄i) in improving (blue) and deteriorating (red) safety conditions.

to be an underlying risk-overcompensation bias, which is amplified by the endowment

effect when safety is deteriorating.

4 The Field Experiment

In our study, we also examined whether the subjects would engage in risk-compensating

behaviors in more realistic situations involving non-monetary risk. Specifically, our

goal was two-fold: (a) to examine whether we would observe a similar degree of risk-

compensating behavior in a field setting; and more importantly, (b) whether there is

strong individual-level correspondence between one’s risk-compensating tendencies in the

lab and in the field.

4.1 Design

We introduced two field safety interventions prior to conducting the laboratory experi-

ment. Both the field and the laboratory experiments took place during the same sessions

with the same n=314 subjects. We utilized two rooms: a waiting room and the labora-
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tory. Prior to the laboratory experiment, subjects entered the waiting room for on-site

registration. We tested whether the subjects exhibited risk-compensating behavior in re-

sponse to two safety interventions below.14 Both interventions were designed to improve

the subjects’ perceived risk of catching the disease.15

1. N95 Mask Intervention: Randomized at the individual level, 50% of subjects

were notified prior to the session that they will have to wear an N95 or equivalent

respirator.16

2. HEPA Intervention: In half of the sessions, the subjects learned that an air

purifier equipped with a HEPA filter was operating in waiting the room. This

information together with a government-supported claim that it may destroy up

to 99.7% of airborne germs was displayed on a wide-screen LED TV and on flyers.

In the control sessions, although the same air purifier was operating, there was no

such information on display.

These interventions change the external safety conditions of the subjects, but have

different interpretations. With the HEPA Intervention, the baseline is a setting in which

there is no intervention. The N95 Mask Intervention’s effect shall be interpreted differ-

ently. There, the baseline is wearing any mask due to the prevailing mask mandate of the

building while knowing that others wear a higher-grade respirator. This is nevertheless

an external safety condition as the subjects know that half of the room is subjected to

a stricter mandate, and wearing an N95 is not their choice. Hence, wearing it does not

signal a preference.17

The first outcome variable was the distance each subject stood from the person in front

of them in a queue. At the on-site registration in the waiting room, each subject received

a randomly drawn identification number. An experimenter in the room then called them

14For technical details, please find the Protocol in the Supplementary Materials.
15The N95 mask intervention improves both perceived as well as actual risk; the HEPA intervention

only improves the perceived risk, since the same HEPA filter was operating in all conditions.
16Those who did not bring a required respirator received one free of charge. At the time of the sessions,

it was mandatory in Singapore to wear a face mask in all indoor areas, and most people wore either
disposable surgical masks or fabric masks.

17Seres et al. (2021b) provides incentivized survey evidence for a signaling effect of masks if wearing
one is voluntary.
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up based on the order of the identification number and asked them to form a queue to

enter the laboratory. While the subjects were being sent to the laboratory one by one, an

experimenter measured the distance between the first and second subjects in the queue

to the nearest 1 centimeter. This distance was assigned as an outcome variable for the

second subject in the queue.18 We recorded two more outcome variables associated with

precautionary behavior during the laboratory experiment. In the laboratory, we provided

each subject with hand sanitizer wipes at their workstation and recorded whether the

subjects used it. We also recorded the number of times each subject removed their face

mask during the experiment session, e.g., to drink water.

4.2 Empirical Specification

Both the mask and the HEPA interventions are expected to improve the subjects’ per-

ceived safety conditions related to COVID-19.19 We wanted to examine whether, as a

result, participants compensate for the change in perceived risk by being less likely to

engage in precautionary behaviors.

For two outcome variables—the queuing distance (Distance) and the number of

times the subject pulled down the mask during the session (MaskOff)—we estimate

the following OLS:

(7) yi = γ0 + γ1MASKi + γ2HEPAi + γ3MASKi ∗HEPAi + ϕXi + εi.

where yi is the outcome variable; MASKi and HEPAi are indicators for receiving the

mask and HEPA interventions, respectively; and Xi is a vector of subject-specific control

18This measurement is possible for everyone in the room except the first subject in line. To reduce
the loss of data, most sessions had a confederate who took the very first position in the queue. Some
sessions did not have a confederate. In this case, no distance was recorded for the first subject in the
waiting line.

19Subjects were notified prior to the experiment whether they had been selected into the masking
treatment. This could potentially create a selection bias. We tested the independence with the following

logit binary choice model: Pr(MaskS = 1) = exp(γ+ϕXi+εi)
1+exp(γ+ϕXi+εi)

(n=314) in which Xi is the vector of

personal characteristics (age, gender, field of study, number of mathematics courses). No coefficient is
significant at the 5% level.
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variables. For the third outcome variable—the use of hand sanitizer wipes (Sanitizer)—

we estimate an equivalent logit model. The standard errors are clustered at the session

level as the behaviors of the other subjects in the session are (partially) observable.

4.3 Results

The results are shown in columns (1)–(3) of Table 3.20 Overall, we find mixed evidence of

risk-compensating behavior in the field. We find that wearing a higher-grade protective

mask led to a decrease in the use of hand sanitizer wipes (coefficient = -0.74, p = 0.021),

but there were no significant effects on either the queuing distance or the frequency of

taking off masks. A HEPA intervention may have led to an increase in the frequency of

mask removal, but the estimated effect was only marginally significant at the 10% level

(coefficient = 0.51, p = 0.070). HEPA intervention had no significant effect on either

the queuing distance or the use of hand sanitizer. None of the interaction terms were

statistically significant.21

The fact that we do not find robust evidence of risk compensating behavior in the

field is broadly in line with the empirical literature, which has been largely mixed. A

plausible reason behind this is that the cost function of effort c(e, w) may have different

properties in different settings. Depending on how a change in the safety condition affects

the marginal cost of effort, it may or may not be optimal for subjects to compensate for

risk at all.22 Specifically, if an improvement in the safety condition sufficiently reduces

the marginal cost of effort, w and e may in fact be complements.

Next, we test whether subjects who have exhibited greater risk-compensating tenden-

cies in the lab were also more likely to compensate for risk in the field. In columns (4)–(6)

of Table 3, we augment the regression models by including the observed individual degree

of risk compensation in the lab, β̄i, as well as its interactions with the two field interven-

20The main descriptive statistics are summarized in Table A1 in the Supplementary Materials.
21Note that the regressions only include three of the nine questions eliciting the subject’s opinions

about preventive measures. The other six measures (regular testing, drinking hot water) are not related
to the outcome variables.

22The most controversial assumption of Blomquist (1986) is that the safety conditions do not decrease

the marginal cost of effort: ∂∂c(e,w)
∂e∂w ≥ 0. If this does not hold, we may have ∂e∗(w)

∂w < 0 and no risk
compensation (Seres et al., 2021a).
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Table 3: The Effect of Interventions on Precautionary Behavior

(1) (2) (3) (4) (5) (6)
Distance Sanitizer MaskOff Distance Sanitizer MaskOff

Treatment HEPA 4.08 0.66 0.51+ 4.64 0.92 0.63∗

(4.84) (0.64) (0.27) (5.03) (0.62) (0.29)
Treatment MASK 1.10 -0.74∗ 0.043 0.75 -0.56+ -0.0042

(3.46) (0.32) (0.15) (3.32) (0.31) (0.15)
HEPA × MASK -7.97 0.29 -0.44 -8.84+ 0.046 -0.53

(4.74) (0.50) (0.33) (4.81) (0.52) (0.33)
β̄i 26.6 5.14 1.05

(21.9) (4.20) (0.97)
HEPA × β̄i -13.2 -2.12 1.25

(24.7) (4.22) (1.07)
MASK × β̄i -28.0 -2.96 -2.50+

(23.3) (3.25) (1.35)
Queue Length -6.60∗∗∗ -6.73∗∗∗

(1.22) (1.23)
Female 0.75 0.025 -0.50∗ 0.80 0.029 -0.52∗∗

(2.69) (0.48) (0.18) (2.73) (0.48) (0.19)
Importance Indoor Masking 0.59 -0.086 -0.11 0.65 -0.13 -0.11

(1.39) (0.14) (0.10) (1.39) (0.18) (0.11)
Importance Ventillation 1.42 0.16 0.084 1.44 0.26 0.10

(1.34) (0.14) (0.065) (1.41) (0.17) (0.063)
Importance Air Filtering -0.86 -0.043 -0.019 -1.05 -0.12 -0.030

(1.40) (0.14) (0.074) (1.45) (0.12) (0.071)
Age 0.41 -0.11+ 0.020 0.37 -0.11∗ 0.015

(0.55) (0.058) (0.023) (0.53) (0.051) (0.021)
Study Master 5.78 0.71 -0.51∗ 5.99 0.45 -0.53∗

(6.15) (0.79) (0.19) (6.23) (0.91) (0.19)
Study PhD 11.0+ 0.13 -0.30 11.1+ 0.054 -0.28

(5.78) (1.24) (0.33) (5.49) (1.19) (0.34)
Comfort Chair 0.22 0.080

(0.24) (0.074)
Comfort Mask -0.30∗ -0.036

(0.14) (0.057)
Comfort Temperature 0.46∗ -0.0015

(0.21) (0.076)
Constant 63.2∗∗∗ -2.55 0.56 65.3∗∗∗ 0.42 1.06

(12.4) (1.71) (0.99) (12.3) (1.55) (0.72)
Observations 304 314 314 304 314 314
R2 0.1597 0.0845 0.1650 0.0964
Pseudo R2 0.0987 0.0712

Notes: OLS (columns 1, 3, 4, 6) and logistic regression (columns 2, 5) estimates. Standard errors
are clustered at the session level and are in parentheses. † p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001. In half of the sessions, subjects were told that a high-efficiency particulate absorbing
(HEPA) filter was operating (HEPA). One half of the subjects were required to wear an N95 or
equivalent respirator throughout the session (Mask). Distance is the distance between the subject
and the person in front of them in a queue, before entering the laboratory. MaskOff is the number
of times the subject removed their mask during the session. Sanitizer=1 if the subject used or took
the sanitizer wipe, and 0 otherwise. The questionnaire elicited the subjects’ opinions on a 7-point
Likert scale.



tions. The estimated coefficients for the interactions reveal whether the individuals who

exhibited a greater degree of risk compensation in the lab were also more responsive to

the field interventions.

Overall, we do not find such evidence. None of the estimated coefficients for the inter-

actions were statistically significant at the 5% level. The estimated coefficient for MASK

×β̄i was negative and marginally significant at the 10% significance level. This estimate

implies that, on average, subjects who exhibited a greater degree of risk compensation

in the lab (i.e., lower β̄i) were more likely to take off the mask in response to the mask

intervention.

5 Discussion

The concern that risk-mitigating measures may create a false sense of security—the risk

compensation hypothesis—is a recurring point in public debates. The bleak implication

of this hypothesis is that reduced individual effort will offset the intended benefits of

policy interventions in crisis situations. Previous research on risk compensation using

field and observational data has been largely mixed and inconclusive. We address this

puzzle by formally defining risk compensation (RC), and testing it together with the

hypothesis of risk-overcompensation bias (ROB).

One major challenge of studying risk compensation in the field has been that people’s

cost of effort are not observable, which makes it impossible to determine what their

optimal response to a safety intervention is. We overcome this problem in our laboratory

experiment by precisely defining the cost of effort (i.e., insurance). In the experiment,

subjects faced risks of losing their initial endowment, which could be mitigated by buying

costly insurance. We exposed the subjects to varying degree of risks and observed their

insurance choices. Subjects exhibited a strong tendency to overreact to changes in risk,

exhibiting ROB. We found that over 70% of the subjects exhibited ROB. We also found

strong asymmetry in their behavior. The subjects exhibited significantly larger degree

of risk compensation when safety was deteriorating than when it was improving. The
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evidence is consistent with subjects exhibiting an endowment effect towards safety.

To test whether people’s ROB in the lab predicts their tendency to compensate for

risk in the field, we exposed the subjects of the laboratory experiment to two real-world

safety interventions. Randomized at the session level, half of the subjects learned about

a HEPA filter operating in the room; and randomized at the individual level, half the

subjects were instructed to wear a more protective face mask. We examined whether the

subjects exposed to the interventions were less likely to engage in precautionary measures:

standing closer in the queue, being less likely to use sanitizer wipes, and removing their

mask more frequently. We found suggestive but weak evidence of risk compensation in

the field. Interestingly, we found no link between the lab and the field: The degree of

risk-compensating behavior in the laboratory experiment did not predict the degree of

precautionary behavior in the field.

The lack of explanatory power of behaviors in the lab in predicting behaviors in the

field calls for caution, on at least two fronts. First, our results illustrate the difficulty of

precisely identifying risk compensation in the field. In the field, there is significant het-

erogeneity across individuals in both the perceived changes in risk and the cost of effort

in response to safety interventions. This can explain why previous empirical evidence on

risk compensation has been largely mixed and highlights the need to study risk compen-

sation in more controlled environments. Second, risk-compensating tendencies may be

highly context-specific.

Regarding the underlying cognitive process, we do not believe that ROB is an error

in probability reasoning. In the lab, the subjects received an unbiased estimate of the

probability of an accident.23 One possible cause of ROB may stem from inattention. For

example, people have a tendency to pay disproportionately more attention to information

that is salient to them, and little attention to other information (e.g., Chetty et al.

(2009); Finkelstein (2009); Bordalo et al. (2013)). In our experiment set-up, when safety

23For example, consider the generally accepted theory of logarithmic perceived probabilities (Gabaix,
2019). As Steiner and Stewart (2016) point out, individuals may underestimate high and overestimate
low probabilities. In our experiment, the chance of an accident is always low, never higher than 25%.
An increase in the safety condition w reduces the probability of an accident. An overestimation of the
(low) probability of an accident would make subjects want to buy more insurance than optimal, not less.
Hence, logarithmic perceived probabilities cannot explain ROB.
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improves, there are two forces in effect: on the one hand, the individual would want to

reduce effort because there is lower risk, but on the other hand, the individual would want

to increase effort because the effort is less costly. If people pay too much attention to

reduced risk and too little attention to reduced cost of effort, they could end up reducing

effort by more than what would be optimal. Future studies could explore the underlying

mechanisms behind this result.

We also found that subjects overcompensated more when safety was deteriorating than

when it was improving. This is likely linked to the endowment effect (Kahneman et al.,

1990, 1991), specifically, the fact that people’s willingness-to-accept values for increases in

risk tend to be higher than the willingness-to-pay values for risk decreases (Machina and

Viscusi, 2013). If this gap holds in general, implementing safety-improving measures in a

crisis situation and then later removing them (or vice versa) can lead to long-term effects

on community behavior. Hence, understanding the underlying mechanism and its possible

link to the endowment effect would be crucial for long-term public risk management.
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Supplementary Materials A: Experiment Protocol

This section describes the protocol for the decision-making experiment. It was given to

the four experimenters that carried out the sessions. The sessions took place from July 13

to August 25, 2022, at the Centre for Behavioural Economics, at the National University

of Singapore, at a time when the number of COVID-19 cases in Singapore had reached

a record high and ranged between 1.36–1.85% of the resident population (Worldometers,

2022).

Outline

This is a combined field and laboratory experiment that takes place in two neighboring

rooms of the Innovation 4.0 building of the National University of Singapore (NUS). One

is Meadow 2 (henceforth waiting room), the other is the Center for Behavioral Economics

(henceforth laboratory). The participants are students of the NUS that registered for the

study as subjects. Before the session, you will receive the list of participants on which,

those that are marked received a notification letter 24 hours prior to their session that

they are required to wear a higher grade face mask.24

The experiment has two interventions. 1) In half of the sessions, a tv screen mounted

on the wall informs the participants that there is an air purifier working in the room with

a HEPA filter. The purifier is always switched on, but there is no display in the baseline

treatment. The treatment condition for the first session is determined by a coin toss, then

the two alternate between sessions (there will be an even number of sessions). 2) Half of

the participants will be asked to wear a KF94 (or equivalent or higher grade) respirator

during the entire experiment. This will be randomized as follows. The registration

deadline is 24 hours before the scheduled experiment. Then, putting the participants

in alphabetic order and determined by a coin toss, the first person will be either in the

treatment group or not, odd numbers will be assigned to this condition and even number

to the other one. Those selected will receive a notification after the registration deadline

24The notification explains that these mask types are accepted as higher grade: N95, KF94, FFP2, or
higher. The general inclusion criteria is that the face covering must be certified to filter at least 90% of
microscopic particles that may carry viruses or bacteria.

27



has passed (Appendix 2 of this document).

The subjects can enter the waiting room when they arrive. In this room, there are

three experimenters, numbered according to their role as E1-E3. Upon entering the room,

the subjects start at the registration desk. There, Experimenter 1 records their arrival,

gives them a randomized identification number (ID) that is between 2-13, and a sticker

with this number. E2 plays the role of a participant and always receives ID 1. E1 i) records

the subjects’ arrival, ii) gives a sticker to them with the ID number and asks them to put it

on their shoulder, iii) gives instructions regarding the general rules of the experiment (e.g.

no communication and no phones are allowed), iv) hands over a questionnaire (Appendix

1) and tells them to give it in later in the laboratory, and v) takes care of the masking

treatment. For subjects selected for wearing an KF94 respirator, the following protocol

applies. First, E1, who has a complete list of participants and their treatment group,

asks them whether they have received the notification. Then, E1 confirms their status

and asks them what sort of mask they are wearing.25 After clarifying this, E1 states this:

“Higher grade masks with better filtration efficiency protect you better from COVID-

19”.26.If they are not wearing a required mask type, E1 offers them a KF94 respirator

free of charge and asks them to put it on. E1 fills out these parts of the questionnaire:

Date and time and ID number; and supervises the answers to the first questions about the

notification email, receiving a mask in the waiting room, and the mask they are wearing.

After registration, the subjects are asked to take a seat and fill out the rest of the

questionnaire. Then, they are called to form a waiting line in front of the door in the

order of their ID number. There are always maximum six people in the waiting line. E1

coordinates this by first asking ID 1-6 to line up, then asks one person to leave the room

and the next person to join the line at each turn. The place for the first person is marked

by a tape on the floor.

E3 is responsible for measuring the distancing between subjects as follows. E3 uses

a smartphone with an installed augmented-reality tape-measure app that is capable of

25E1 is familiar with all publicly available mask types. All subjects are required to wear some sort of
mask in all indoor settings according to the prevailing campus regulations.

26This corresponds to the guidelines of the Ministry of Health https://www.moh.gov.sg/covid-
19/general/faqs—masks-and-personal-protective-equipment-(ppe)
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measuring small distances in centimeters (Measure app, iPhone 12). The app measures

distance by pinning two points on the ground. These two points are pinned to the closest

points of the first and second subject’s shoes. The measurement should commence after

these two people stop moving. The distance kept between them is the outcome variable

for the second person. The queuing order makes E2 the first in the line, enabling the

measurement of all subjects. E3 must make sure that the measurement is not obvious to

the participants. By doing so, E2 sits perpendicular to the waiting line facing the space

between the first two people. E1 monitors this and calls the subjects one-by-one to leave

the room and go to the laboratory. The waiting room stage ends when every subjects

left the room.

In the laboratory, another experimenter (E4) welcomes the subjects who arrive one-

by-one. E4 takes the questionnaire and makes sure they are completely filled out then

instructs them to go to a specific work station. Each work station has a desktop computer,

a sheet of blank paper, an electronic calculator, an individually packed hand sanitizer

wipe, and a bottle of still drinking water.

The laboratory is equipped with a wide-angle HD camera that records the entire

session. The footage is used to record the number of times one temporarily removes their

masks e.g. to drink water, and the use of hand sanitizer wipe. After the laboratory

experiment, participants are paid in cash and called in the order of their ID number,

ensuring that they all spend the same amount of time on camera.
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Questionnaire Handout

Date and time:

ID number:

Answering all questions is mandatory to complete the experiment. Please keep this sheet

and hand it over to the experimenter when you enter the laboratory.

Were you contacted by email and asked to wear a higher-grade mask (N95, FFP2, KF94,

KN95, or higher) during this experiment?

□ Yes

□ No

If you answered yes to the previous question, did you

□ bring your own mask

□ or receive a free mask at the registration?

What sort of mask are you wearing now?

□ Surgical mask.

□ Fabric mask (e.g. textile)

□ Respirator (N95, FFP2, KF94, KN94, or higher).
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Instructions

Welcome to the experiment. Please read these instructions carefully. They are identical

for all the participants in this session. If you have any questions, please raise your hand,

and an experimenter will come to you and answer your questions. Communication with

other participants is not allowed. You must leave the experiment with no payment if you

do not conform to these rules.

This is an economic experiment. Therefore all the information we give you will be true.

There will be no debriefing after the session. During the experiment, you can earn money

which will be paid to you in private and in cash at the end of the session. You will

receive $5 just for completing the experiment, but you can earn more depending on your

decisions and performance in the tasks. The experiment consists of two parts. You must

complete the two parts and a questionnaire to receive your earnings.

Part 1

In this part of the experiment, you receive an endowment of $17.50. You might keep this

amount until the end of Part 1 or lose $15. Whether you make a loss depends on your

decisions and chance. Below we explain how to make decisions and how your payment is

calculated.

You make five decisions. With equal chance, only one of these decisions will influence

your payment. For example, in a round, you face a decision to buy insurance. You do this

by choosing your insurance number. A higher insurance number reduces the chance

of losing $15, but it is costly. Both the chance of losing money and the cost of insurance

depends on a coefficient that changes in each round, but they are calculated as follows:

• The cost of insurance is

INSURANCE2

COEFFICIENT

• And the chance of losing $15 is

1

INSURANCE × COEFFICIENT
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Example: If the coefficient is 4 and you choose to buy 1.2 insurance, then you pay

1.22

4
= 0.36$ for the insurance and the chance of losing $15 will be 1

1.2∗4 = 1
4.8

= 20.8%.

The computer randomly decides if you lose the amount. In this example, you earn 17.50-

0.36-15=$2.14 with a 20.8% chance and 17.50-0.36=$17.14 with a 79.2% chance.

The coefficient is a number between 4 and 10. Each of the five rounds has a coefficient

of unknown value, a different value in all five periods. We do not tell you its value but

you can learn about it as follows.

Before making a choice, you can run a trial simulation by producing draws using the

same coefficient. On the first screen, you are asked to choose an insurance number. This

is a simulation, that is, this choice does not influence your payment. Then, the computer

makes ten draws and tells you the outcome: whether you made a loss, the outcome of

the draw and your simulated payment in each case.

Only on the next screen, can you make your choice that influences your payment.

You can make any permissible choice; the simulated choice you made does not limit you.

Note that all draws are independent of each other, but the coefficient is the same in the

actual and the ten simulated draws. After this, a new round starts with a new coefficient.

There are two limits: The insurance number you choose must be at least 1 and the

amount you spend on the insurance cannot be larger than $2.50. Hence, you can never

lose money in this experiment. You can choose your number up to one decimal precision.

This means that you can choose any insurance number between 1 and 3.1.

Remember: Although you make five decisions, only one of them is paid out. You do

not know which one, in advance. After the five decisions, you will learn the outcome of

this part.

Part 2

[Only read this after Part 1!]

In Part 2, you make 10 decisions. you can see these 10 decision problems on your screen.

You can choose between two alternative options for each of the 10 decision problems.

Your decision is final only after you have selected an option in each row and have clicked
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on the “OK” button at the bottom of the screen. Take your time to make your decisions

because your choice – as described below – determines your payoff in Part 2.

After you have made all ten decisions and pressed ’ok’, your payoff is determined

as follows: The computer will draw two random numbers with a virtual 10-sided dice

between 1 and 10, with all numbers equally likely. The first random number determines

the row number from the table on your screen. The option you select in this row will be

executed using the second random number. You get the outcome from this option at the

end of the experiment.

Example: Suppose the computer has selected 2 as the first number, i.e., the decision

problem in the second row of the table. Then, the option you have chosen in the second

row will be executed, i.e., it will be relevant for your payoff. Suppose you have selected

option A in that row. Then, in this case, you will receive either $2 (with 20% probability

or if the second random number is 1 or 2) or $1.60 (with 80% probability or if the second

random number is 3;4;5;6;7;8;9 or 10). Assume the computer has selected 9 as the second

number. Your payoff in Part 2 would thus be $1.60.

You make your decisions only once. The random numbers are drawn at the end of

this part. You will learn the outcome.

Questionnaire At the end of the experiment, we will ask you to complete a computerized

questionnaire. After completing the experiment and the questionnaire, you will receive

your earnings in cash, in addition to the $5 show-up fee.
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Supplementary Materials B: Summary Statistics

Table A1: Summary Statistics

Mean Standard Dev. Minimum Maximum
Safety Interventions
HEPA 0.51 0.50 0 1
Mask 0.52 0.50 0 1

Outcome Variables
Distance (cm) 62.37 25.95 13 165
Mask Off 0.86 1.43 0 12
Sanitizer 0.11 0.31 0 1

Characteristics
CRRA coefficient ri 0.52 0.027 -0.95 1.37
Gender (Female=1) 0.54 0.50 0 1
Age in Years 23.23 3.57 19 46
Study Master 0.06 0.006 0 1
Study Ph.D. 0.05 0.005 0 1

Questionnaire
Importance Indoor Masking 6.16 1.09 1 7
Importance Regular Testing 5.66 1.43 1 7
Importance Hot Water 2.11 1.43 1 7
Importance Ventillation 5.82 1.18 1 7
Importance Crowd Control 5.95 1.21 1 7
Importance Air Filtering 5.32 1.35 1 7
Importance Outdoor Masking 4.12 1.85 1 7
Importance Vitamin C 3.41 1.72 1 7
Importance Contact Tracing 4.88 1.64 1 7
Comfort Chair 6.14 1.06 2 7
Comfort Mask 5.48 1.50 1 7
Comfort Temperature 5.96 1.19 2 7

Notes: One half of the sessions received HEPA intervention, in which subjects were told that a
high-efficiency particulate absorbing (HEPA) filter was operating. One half of the subjects received
Mask intervention where they were required to wear an N95 or equivalent respirator throughout the
session. Distance is the distance between the subject and the person in front of them in a queue,
before entering the laboratory. MaskOff is the number of times the subject removed their mask
during the experimental session. Sanitizer is a dummy variable, equals 1 if the subject used or
took the sanitizer wipe, and 0 otherwise. The questionnaire included questions eliciting the subjects’
opinions on a 7-point Likert scale.
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Supplementary Materials C: Robustness Checks

Table A2: Estimates on the amount of insurance purchased

(1) (2) (3) (4)
ei,t ei,t ei,t ei,t

wi,t -0.034∗∗∗ -0.035∗∗∗ -0.064∗∗ -0.066∗∗

(0.0055) (0.0055) (0.020) (0.021)
t 0.025∗∗ 0.037∗∗ 0.038∗∗

(0.0083) (0.014) (0.014)
wi,t−1 0.014 0.017

(0.020) (0.021)
ri 0.049

(0.069)
Age -0.074

(0.075)
Female 0.0070

(0.070)
High Math -0.074

(0.069)
Constant 2.23∗∗∗ 2.17∗∗∗ 2.22∗∗∗ 2.23∗∗∗

(0.047) (0.052) (0.072) (0.095)
Observations 1570 1570 1256 1256
R2 0.011 0.014 0.025 0.040

Notes: Random-effect GLS regressions. Standard errors in parentheses: † p < 0.10, ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001. The dependent variable ei,t is the amount of insurance purchased by
subject i in period t. The main independent variable of interest is wi,t, the safety condition. The
CRRA coefficient ri is estimated with the Holt and Laury (2002) choice experiment. High Math is
a dummy variable whose value is 1 for those who took at least 3 university-level math courses. Age
is a dummy variable whose value is 1 for those aged above the median age of 23.
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